Pretreatment of Human Cervicovaginal Mucus with Pluronic F127 Enhances Nanoparticle Penetration without Compromising Mucus Barrier Properties to Herpes Simplex Virus

نویسندگان

  • Laura M. Ensign
  • Samuel K. Lai
  • Ying-Ying Wang
  • Ming Yang
  • Olcay Mert
  • Justin Hanes
  • Richard Cone
چکیده

Mucosal drug delivery nanotechnologies are limited by the mucus barrier that protects nearly all epithelial surfaces not covered with skin. Most polymeric nanoparticles, including polystyrene nanoparticles (PS), strongly adhere to mucus, thereby limiting penetration and facilitating rapid clearance from the body. Here, we demonstrate that PS rapidly penetrate human cervicovaginal mucus (CVM), if the CVM has been pretreated with sufficient concentrations of Pluronic F127. Importantly, the diffusion rate of large polyethylene glycol (PEG)-coated, nonmucoadhesive nanoparticles (PS-PEG) did not change in F127-pretreated CVM, implying that F127 did not significantly alter the native pore structure of CVM. Additionally, herpes simplex virus type 1 (HSV-1) remains adherent in F127-pretreated CVM, indicating that the presence of F127 did not reduce adhesive interactions between CVM and the virions. In contrast to treatment with a surfactant that has been approved for vaginal use as a spermicide (nonoxynol-9 or N9), there was no increase in inflammatory cytokine release in the vaginal tract of mice after daily application of 1% F127 for 1 week. Pluronic F127 pretreatment holds potential as a method to safely improve the distribution, retention, and efficacy of nanoparticle formulations without compromising CVM barrier properties to pathogens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure

Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing s...

متن کامل

Altering Mucus Rheology to “Solidify” Human Mucus at the Nanoscale

The ability of mucus to function as a protective barrier at mucosal surfaces rests on its viscous and elastic properties, which are not well understood at length scales relevant to pathogens and ultrafine environmental particles. Here we report that fresh, undiluted human cervicovaginal mucus (CVM) transitions from an impermeable elastic barrier to non-adhesive objects sized 1 microm and larger...

متن کامل

Barrier properties of gastrointestinal mucus to nanoparticle transport.

Gastrointestinal mucus, a complex network of highly branched glycoproteins and macromolecules, is the first barrier through which orally delivered drug and gene vectors must traverse. The diffusion of such vectors can be restricted by the high adhesivity and viscoelasticity of mucus. In this investigation, the barrier properties of gastrointestinal mucus to particle transport were explored usin...

متن کامل

Demonstration of Herpes Simplex Virus, Cytomegalovirus and Epstein-Barr Virus in Colorectal Cancer

Background: The present study sought to investigate molecular evidence for association between the presence of herpes simplex virus (HSV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) in CRC and colorectal polyp by using the PCR method in Iran. Methods: In this analytical case-control study, we selected 15 patients with CRC, 20 patients with colorectal polyp, and 35 patients without mali...

متن کامل

Up-Regulation of Integrinsn α2β1 and α3β1 Expression in Human Foreskin Fibroblast Cells after In-Vitro Infection with Herpes Simplex Virus Type 1

The interaction of Herpes Simplex Virus type 1 (HSV-1) with human fetal foreskin fibroblast (HFFF) cell was studied using a recent isolate of HSV-1 which was propagated in Hep-2 cells. HFFF cells were challenged with HSV-1 with a multiplicity of infection (MOI) of 1 virus/cell for 24 hours. Flow cytometric analysis demonstrated that HSV-1 challenged HFFF cells expressed increased levels of α2β1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014